前言
vLLM是一个快速且易于使用的LLM推理和服务库。
vLLM速度很快:
最先进的服务吞吐量
使用PagedNote有效管理注意力键和值内存
传入请求的连续批处理
使用CUDA/HIP图快速执行模型
量化:GPTQ、AWQ、INT4、INT8和FP8
优化了CUDA内核,包括与FlashNote和FlashInfer的集成。
推测译码
组块预填充
vLLM灵活且易于使用:
与流行的HuggingFace模型无缝集成
高吞吐量服务于各种解码算法,包括并行采样、波束搜索等
分布式推理的张量并行性和管道并行性支持
流式输出
与OpenAI兼容的API服务器
支持英伟达图形处理器、AMD图形处理器和图形处理器、英特尔图形处理器、高迪®加速器和图形处理器、PowerPC图形处理器、TPU和AWS训练和推理加速器。
前缀缓存支持
多lora支持
Operating System: Ubuntu 22.04.4 LTS
参考文档
- Welcome to vLLM!
- vllm-project/vllm
- Quickstart
- Distributed Inference and Serving
- OpenAI Chat Completion Client
Offline Batched Inference
# pip install vllm
from vllm import LLM, SamplingParams
prompts = [
"write a quick sort algorithm.",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=2048)
llm = LLM(model="Qwen/Qwen2.5-Coder-0.5B-Instruct")
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Chat
link: https://docs.vllm.ai/en/latest/getting_started/examples/chat.html
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
sampling_params = SamplingParams(temperature=0.5)
def print_outputs(outputs):
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print("-" * 80)
print("=" * 80)
# In this script, we demonstrate how to pass input to the chat method:
conversation = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": "Hello"
},
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
{
"role": "user",
"content": "Write an essay about the importance of higher education.",
},
]
outputs = llm.chat(conversation,
sampling_params=sampling_params,
use_tqdm=False)
print_outputs(outputs)
# You can run batch inference with llm.chat API
conversation = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": "Hello"
},
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
{
"role": "user",
"content": "Write an essay about the importance of higher education.",
},
]
conversations = [conversation for _ in range(10)]
# We turn on tqdm progress bar to verify it's indeed running batch inference
outputs = llm.chat(messages=conversations,
sampling_params=sampling_params,
use_tqdm=True)
print_outputs(outputs)
# A chat template can be optionally supplied.
# If not, the model will use its default chat template.
# with open('template_falcon_180b.jinja', "r") as f:
# chat_template = f.read()
# outputs = llm.chat(
# conversations,
# sampling_params=sampling_params,
# use_tqdm=False,
# chat_template=chat_template,
# )
Reasoning Outputs
link: https://docs.vllm.ai/en/latest/features/reasoning_outputs.html
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
--enable-reasoning --reasoning-parser deepseek_r1
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(model=model, messages=messages)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
print("reasoning_content:", reasoning_content)
print("content:", content)
Basic With Model Default Sampling
link: https://docs.vllm.ai/en/latest/getting_started/examples/basic_with_model_default_sampling.html
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM with built-in default generation config.
# The generation config is set to None by default to keep
# the behavior consistent with the previous version.
# If you want to use the default generation config from the model,
# you should set the generation_config to "auto".
llm = LLM(model="Qwen/Qwen2.5-0.5B-Instruct", generation_config="auto")
# Load the default sampling parameters from the model.
sampling_params = llm.get_default_sampling_params()
# Modify the sampling parameters if needed.
sampling_params.temperature = 0.5
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
CPU Offload
link: https://docs.vllm.ai/en/latest/getting_started/examples/cpu_offload.html
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="meta-llama/Llama-2-13b-chat-hf", cpu_offload_gb=10)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
LoRA Adapters
from huggingface_hub import snapshot_download
sql_lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
llm = LLM(model="meta-llama/Llama-2-7b-hf", enable_lora=True)
sampling_params = SamplingParams(
temperature=0,
max_tokens=256,
stop=["[/assistant]"]
)
prompts = [
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
]
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
)
GGUF Inference
link: https://docs.vllm.ai/en/latest/getting_started/examples/gguf_inference.html
# SPDX-License-Identifier: Apache-2.0
from huggingface_hub import hf_hub_download
from vllm import LLM, SamplingParams
def run_gguf_inference(model_path, tokenizer):
# Sample prompts.
prompts = [
"How many helicopters can a human eat in one sitting?",
"What's the future of AI?",
]
prompts = [[{"role": "user", "content": prompt}] for prompt in prompts]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0, max_tokens=128)
# Create an LLM.
llm = LLM(model=model_path, tokenizer=tokenizer)
outputs = llm.chat(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
if __name__ == "__main__":
repo_id = "bartowski/Phi-3-medium-4k-instruct-GGUF"
filename = "Phi-3-medium-4k-instruct-IQ2_M.gguf"
tokenizer = "microsoft/Phi-3-medium-4k-instruct"
model = hf_hub_download(repo_id, filename=filename)
run_gguf_inference(model, tokenizer)
Distributed
link: https://docs.vllm.ai/en/latest/getting_started/examples/distributed.html
# SPDX-License-Identifier: Apache-2.0
"""
This example shows how to use Ray Data for running offline batch inference
distributively on a multi-nodes cluster.
Learn more about Ray Data in https://docs.ray.io/en/latest/data/data.html
"""
from typing import Any, Dict, List
import numpy as np
import ray
from packaging.version import Version
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
from vllm import LLM, SamplingParams
assert Version(ray.__version__) >= Version(
"2.22.0"), "Ray version must be at least 2.22.0"
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Set tensor parallelism per instance.
tensor_parallel_size = 1
# Set number of instances. Each instance will use tensor_parallel_size GPUs.
num_instances = 1
# Create a class to do batch inference.
class LLMPredictor:
def __init__(self):
# Create an LLM.
self.llm = LLM(model="meta-llama/Llama-2-7b-chat-hf",
tensor_parallel_size=tensor_parallel_size)
def __call__(self, batch: Dict[str, np.ndarray]) -> Dict[str, list]:
# Generate texts from the prompts.
# The output is a list of RequestOutput objects that contain the prompt,
# generated text, and other information.
outputs = self.llm.generate(batch["text"], sampling_params)
prompt: List[str] = []
generated_text: List[str] = []
for output in outputs:
prompt.append(output.prompt)
generated_text.append(' '.join([o.text for o in output.outputs]))
return {
"prompt": prompt,
"generated_text": generated_text,
}
# Read one text file from S3. Ray Data supports reading multiple files
# from cloud storage (such as JSONL, Parquet, CSV, binary format).
ds = ray.data.read_text("s3://anonymous@air-example-data/prompts.txt")
# For tensor_parallel_size > 1, we need to create placement groups for vLLM
# to use. Every actor has to have its own placement group.
def scheduling_strategy_fn():
# One bundle per tensor parallel worker
pg = ray.util.placement_group(
[{
"GPU": 1,
"CPU": 1
}] * tensor_parallel_size,
strategy="STRICT_PACK",
)
return dict(scheduling_strategy=PlacementGroupSchedulingStrategy(
pg, placement_group_capture_child_tasks=True))
resources_kwarg: Dict[str, Any] = {}
if tensor_parallel_size == 1:
# For tensor_parallel_size == 1, we simply set num_gpus=1.
resources_kwarg["num_gpus"] = 1
else:
# Otherwise, we have to set num_gpus=0 and provide
# a function that will create a placement group for
# each instance.
resources_kwarg["num_gpus"] = 0
resources_kwarg["ray_remote_args_fn"] = scheduling_strategy_fn
# Apply batch inference for all input data.
ds = ds.map_batches(
LLMPredictor,
# Set the concurrency to the number of LLM instances.
concurrency=num_instances,
# Specify the batch size for inference.
batch_size=32,
**resources_kwarg,
)
# Peek first 10 results.
# NOTE: This is for local testing and debugging. For production use case,
# one should write full result out as shown below.
outputs = ds.take(limit=10)
for output in outputs:
prompt = output["prompt"]
generated_text = output["generated_text"]
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
# Write inference output data out as Parquet files to S3.
# Multiple files would be written to the output destination,
# and each task would write one or more files separately.
#
# ds.write_parquet("s3://<your-output-bucket>")
OpenAI-Compatible Server
api: https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html
"""
$ pip install vllm
$ vllm serve Qwen/Qwen2.5-Coder-0.5B-Instruct --tensor-parallel-size 8
$ curl http://localhost:8000/v1/models
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-Coder-0.5B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"}
]
}'
"""
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
completion = client.completions.create(
model="Qwen/Qwen2.5-Coder-0.5B-Instruct",
prompt="write a quick sort algorithm in Python.",
max_tokens=256
)
print(f"Completion result:\n{completion}")
print(f"{'-'*42}")
print(f"response:\n{completion.choices[0].text}")
print(f"{'-'*42}{'qwq'}{'-'*42}")
chat_response = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-0.5B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "write a quick sort algorithm in Python."},
]
)
print(f"Chat response:\n{chat_response}")
print(f"{'-'*42}")
print(chat_response.choices[0].message.content)
print(f"{'-'*42}{'qwq'}{'-'*42}")
models = client.models.list()
model = models.data[0].id
chat_completion = client.chat.completions.create(
messages=[{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "Who won the world series in 2020?"
}, {
"role":
"assistant",
"content":
"The Los Angeles Dodgers won the World Series in 2020."
}, {
"role": "user",
"content": "Where was it played?"
}],
model=model,
)
print(f"Chat completion results:\n{chat_completion}")
print(f"{'-'*42}")
print(chat_completion.choices[0].message.content)
结语
第二百四十二篇博文写完,开心!!!!
今天,也是充满希望的一天。