前言
此脚本展示了如何使用SFTTrainer将模型或适配器微调到目标数据集中。
src link: https://github.com/huggingface/trl/blob/main/examples/scripts/sft.py
Operating System: Ubuntu 22.04.4 LTS
参考文档
TRL - Transformer Reinforcement Learning
TRL - Examples (huggingface)
examples/scripts/sft.py
训练脚本
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 """ # regular: python examples/scripts/sft.py \ --model_name_or_path="facebook/opt-350m" \ --dataset_text_field="text" \ --report_to="wandb" \ --learning_rate=1.41e-5 \ --per_device_train_batch_size=64 \ --gradient_accumulation_steps=16 \ --output_dir="sft_openassistant-guanaco" \ --logging_steps=1 \ --num_train_epochs=3 \ --max_steps=-1 \ --push_to_hub \ --gradient_checkpointing # peft: python examples/scripts/sft.py \ --model_name_or_path="facebook/opt-350m" \ --dataset_text_field="text" \ --report_to="wandb" \ --learning_rate=1.41e-5 \ --per_device_train_batch_size=64 \ --gradient_accumulation_steps=16 \ --output_dir="sft_openassistant-guanaco" \ --logging_steps=1 \ --num_train_epochs=3 \ --max_steps=-1 \ --push_to_hub \ --gradient_checkpointing \ --use_peft \ --lora_r=64 \ --lora_alpha=16 """ from datasets import load_datasetfrom transformers import AutoTokenizerfrom trl import ( ModelConfig, SFTConfig, SFTScriptArguments, SFTTrainer, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) if __name__ == "__main__" : parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig)) script_args, training_args, model_config = parser.parse_args_and_config() quantization_config = get_quantization_config(model_config) model_kwargs = dict ( revision=model_config.model_revision, trust_remote_code=model_config.trust_remote_code, attn_implementation=model_config.attn_implementation, torch_dtype=model_config.torch_dtype, use_cache=False if training_args.gradient_checkpointing else True , device_map=get_kbit_device_map() if quantization_config is not None else None , quantization_config=quantization_config, ) training_args.model_init_kwargs = model_kwargs tokenizer = AutoTokenizer.from_pretrained( model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True ) tokenizer.pad_token = tokenizer.eos_token dataset = load_dataset(script_args.dataset_name) trainer = SFTTrainer( model=model_config.model_name_or_path, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split], tokenizer=tokenizer, peft_config=get_peft_config(model_config), ) trainer.train() trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)
结语
第一百七十六篇博文写完,开心!!!!
今天,也是充满希望的一天。