前言
PyTorch
的官网地址为:https://pytorch.org/ 。
PyTorch Tutorials
的地址为:https://pytorch.org/tutorials/ 。
本篇博客代码仓库: https://github.com/LuYF-Lemon-love/susu-cuda-example 。
操作系统:Windows 10 专业版
参考文档
内容
文件
$ tree -L 2
.
├── 01-just-in-time.py
├── 02-setuptools.py
├── 03-train.py
├── env
│ ├── bin
│ ├── include
│ ├── lib
│ ├── lib64 -> lib
│ ├── pyvenv.cfg
│ └── share
├── include
│ └── add2.h
├── kernel
│ ├── add2.cpp
│ └── add2_kernel.cu
├── LICENSE
├── README.md
├── run.sh
└── setup.py
8 directories, 11 files
$
安装
- 创建虚拟环境:
python -m venv env
source env/bin/activate
which python
pip install --upgrade pip
- 使用 pip 安装依赖:
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install ninja -i https://pypi.tuna.tsinghua.edu.cn/simple
CUDA算子实现
- 新建
include/add2.h
。
void launch_add2(float *c,
const float *a,
const float *b,
int n);
- 新建
kernel/add2_kernel.cu
。
__global__ void add2_kernel(float* c,
const float* a,
const float* b,
int n) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < n; i += gridDim.x * blockDim.x) {
c[i] = a[i] + b[i];
}
}
void launch_add2(float* c,
const float* a,
const float* b,
int n) {
dim3 grid((n + 1023) / 1024);
dim3 block(1024);
add2_kernel<<<grid, block>>>(c, a, b, n);
}
Torch C++封装
- 新建
kernel/add2.cpp
。
#include <torch/extension.h>
#include "add2.h"
void torch_launch_add2(torch::Tensor &c,
const torch::Tensor &a,
const torch::Tensor &b,
int n) {
launch_add2((float *)c.data_ptr(),
(const float *)a.data_ptr(),
(const float *)b.data_ptr(),
n);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("torch_launch_add2",
&torch_launch_add2,
"add2 kernel warpper");
}
Python调用
- 新建
01-just-in-time.py
。
import time
import numpy as np
import torch
from torch.utils.cpp_extension import load
cuda_module = load(name="add2",
extra_include_paths=["include"],
sources=["kernel/add2.cpp", "kernel/add2_kernel.cu"],
verbose=True)
# c = a + b (shape: [n])
n = 1024 * 1024
a = torch.rand(n, device="cuda:0")
b = torch.rand(n, device="cuda:0")
cuda_c = torch.rand(n, device="cuda:0")
ntest = 10
def show_time(func):
times = list()
res = list()
# GPU warm up
for _ in range(10):
func()
for _ in range(ntest):
# sync the threads to get accurate cuda running time
torch.cuda.synchronize(device="cuda:0")
start_time = time.time()
r = func()
torch.cuda.synchronize(device="cuda:0")
end_time = time.time()
times.append((end_time-start_time)*1e6)
res.append(r)
return times, res
def run_cuda():
cuda_module.torch_launch_add2(cuda_c, a, b, n)
return cuda_c
def run_torch():
# return None to avoid intermediate GPU memory application
# for accurate time statistics
a + b
return None
print("Running cuda...")
cuda_time, _ = show_time(run_cuda)
print("Cuda time: {:.3f}us".format(np.mean(cuda_time)))
print("Running torch...")
torch_time, _ = show_time(run_torch)
print("Torch time: {:.3f}us".format(np.mean(torch_time)))
- 运行
01-just-in-time.py
。
$ python 01-just-in-time.py
Using /home/luyanfeng/.cache/torch_extensions/py310_cu117 as PyTorch extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file /home/luyanfeng/.cache/torch_extensions/py310_cu117/add2/build.ninja...
Building extension module add2...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module add2...
Running cuda...
Cuda time: 14.591us
Running torch...
Torch time: 14.329us
$
上述过程使用的是即时编译
(动态编译)编译C++文件,需要安装 ninja
。
Setuptools 编译
- 新建
setup.py
。
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name="add2",
include_dirs=["include"],
ext_modules=[
CUDAExtension(
"add2",
["kernel/add2.cpp", "kernel/add2_kernel.cu"],
)
],
cmdclass={
"build_ext": BuildExtension
}
)
- 新建
02-setuptools.py
。
import time
import numpy as np
import torch
import add2
# c = a + b (shape: [n])
n = 1024 * 1024
a = torch.rand(n, device="cuda:0")
b = torch.rand(n, device="cuda:0")
cuda_c = torch.rand(n, device="cuda:0")
ntest = 10
def show_time(func):
times = list()
res = list()
# GPU warm up
for _ in range(10):
func()
for _ in range(ntest):
# sync the threads to get accurate cuda running time
torch.cuda.synchronize(device="cuda:0")
start_time = time.time()
r = func()
torch.cuda.synchronize(device="cuda:0")
end_time = time.time()
times.append((end_time-start_time)*1e6)
res.append(r)
return times, res
def run_cuda():
add2.torch_launch_add2(cuda_c, a, b, n)
return cuda_c
def run_torch():
# return None to avoid intermediate GPU memory application
# for accurate time statistics
a + b
return None
print("Running cuda...")
cuda_time, _ = show_time(run_cuda)
print("Cuda time: {:.3f}us".format(np.mean(cuda_time)))
print("Running torch...")
torch_time, _ = show_time(run_torch)
print("Torch time: {:.3f}us".format(np.mean(torch_time)))
- 运行
02-setuptools.py
。
$ python setup.py install
running install
/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
warnings.warn(
/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/setuptools/command/easy_install.py:144: EasyInstallDeprecationWarning: easy_install command is deprecated. Use build and pip and other standards-based tools.
warnings.warn(
running bdist_egg
running egg_info
creating add2.egg-info
writing add2.egg-info/PKG-INFO
writing dependency_links to add2.egg-info/dependency_links.txt
writing top-level names to add2.egg-info/top_level.txt
writing manifest file 'add2.egg-info/SOURCES.txt'
reading manifest file 'add2.egg-info/SOURCES.txt'
adding license file 'LICENSE'
writing manifest file 'add2.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_ext
/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/utils/cpp_extension.py:388: UserWarning: The detected CUDA version (11.5) has a minor version mismatch with the version that was used to compile PyTorch (11.7). Most likely this shouldn't be a problem.
warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda))
building 'add2' extension
creating /home/luyanfeng/my_code/github/susu-cuda-example/build
creating /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310
creating /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/kernel
Emitting ninja build file /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/2] /usr/bin/nvcc -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include/TH -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include/THC -I/home/luyanfeng/my_code/github/susu-cuda-example/include -I/home/luyanfeng/my_code/github/susu-cuda-example/env/include -I/home/luyanfeng/miniconda3/include/python3.10 -c -c /home/luyanfeng/my_code/github/susu-cuda-example/kernel/add2_kernel.cu -o /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/kernel/add2_kernel.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=add2 -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 -std=c++17
[2/2] c++ -MMD -MF /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/kernel/add2.o.d -pthread -B /home/luyanfeng/miniconda3/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/luyanfeng/miniconda3/include -fPIC -O2 -isystem /home/luyanfeng/miniconda3/include -fPIC -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include/TH -I/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/include/THC -I/home/luyanfeng/my_code/github/susu-cuda-example/include -I/home/luyanfeng/my_code/github/susu-cuda-example/env/include -I/home/luyanfeng/miniconda3/include/python3.10 -c -c /home/luyanfeng/my_code/github/susu-cuda-example/kernel/add2.cpp -o /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/kernel/add2.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=add2 -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17
creating build/lib.linux-x86_64-cpython-310
g++ -pthread -B /home/luyanfeng/miniconda3/compiler_compat -shared -Wl,-rpath,/home/luyanfeng/miniconda3/lib -Wl,-rpath-link,/home/luyanfeng/miniconda3/lib -L/home/luyanfeng/miniconda3/lib -Wl,-rpath,/home/luyanfeng/miniconda3/lib -Wl,-rpath-link,/home/luyanfeng/miniconda3/lib -L/home/luyanfeng/miniconda3/lib /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/kernel/add2.o /home/luyanfeng/my_code/github/susu-cuda-example/build/temp.linux-x86_64-cpython-310/kernel/add2_kernel.o -L/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/torch/lib -L/usr/lib64 -lc10 -ltorch -ltorch_cpu -ltorch_python -lcudart -lc10_cuda -ltorch_cuda -o build/lib.linux-x86_64-cpython-310/add2.cpython-310-x86_64-linux-gnu.so
creating build/bdist.linux-x86_64
creating build/bdist.linux-x86_64/egg
copying build/lib.linux-x86_64-cpython-310/add2.cpython-310-x86_64-linux-gnu.so -> build/bdist.linux-x86_64/egg
creating stub loader for add2.cpython-310-x86_64-linux-gnu.so
byte-compiling build/bdist.linux-x86_64/egg/add2.py to add2.cpython-310.pyc
creating build/bdist.linux-x86_64/egg/EGG-INFO
copying add2.egg-info/PKG-INFO -> build/bdist.linux-x86_64/egg/EGG-INFO
copying add2.egg-info/SOURCES.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying add2.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
copying add2.egg-info/top_level.txt -> build/bdist.linux-x86_64/egg/EGG-INFO
writing build/bdist.linux-x86_64/egg/EGG-INFO/native_libs.txt
zip_safe flag not set; analyzing archive contents...
__pycache__.add2.cpython-310: module references __file__
creating dist
creating 'dist/add2-0.0.0-py3.10-linux-x86_64.egg' and adding 'build/bdist.linux-x86_64/egg' to it
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing add2-0.0.0-py3.10-linux-x86_64.egg
removing '/home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/add2-0.0.0-py3.10-linux-x86_64.egg' (and everything under it)
creating /home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/add2-0.0.0-py3.10-linux-x86_64.egg
Extracting add2-0.0.0-py3.10-linux-x86_64.egg to /home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages
add2 0.0.0 is already the active version in easy-install.pth
Installed /home/luyanfeng/my_code/github/susu-cuda-example/env/lib/python3.10/site-packages/add2-0.0.0-py3.10-linux-x86_64.egg
Processing dependencies for add2==0.0.0
Finished processing dependencies for add2==0.0.0
$ python 02-setuptools.py
Running cuda...
Cuda time: 10.347us
Running torch...
Torch time: 12.517us
$
训练模型
之前我们实现了一个$a+b$的tensor求和cuda算子,于是我们可以利用它来实现$\mathcal{L}=a^2+b^2$。
最终训练收敛后a和b都会趋近于0,模型没有输入,只有两个可训练的参数a和b。
- 新建
03-train.py
。
import torch
from torch import nn
from torch.utils.cpp_extension import load
from torch.autograd import Function
cuda_module = load(name="add2",
extra_include_paths=["include"],
sources=["kernel/add2.cpp", "kernel/add2_kernel.cu"],
verbose=True)
class AddModel(nn.Module):
def __init__(self, n):
super(AddModel, self).__init__()
# tensor长度
self.n = n
# 定义可训练参数a和b
self.a = nn.Parameter(torch.Tensor(self.n))
self.b = nn.Parameter(torch.Tensor(self.n))
# 正态分布初始化参数a和b
self.a.data.normal_(mean=0.0, std=1.0)
self.b.data.normal_(mean=0.0, std=1.0)
def forward(self):
# 求a^2与b^2
a2 = torch.square(self.a)
b2 = torch.square(self.b)
# 调用自定义cuda算子对两个平方数求和
c = AddModelFunction.apply(a2, b2, self.n)
return c
class AddModelFunction(Function):
@staticmethod
def forward(ctx, a, b, n):
c = torch.empty(n).to(device="cuda:0")
cuda_module.torch_launch_add2(c, a, b, n)
return c
@staticmethod
def backward(ctx, grad_output):
return (grad_output, grad_output, None)
# 定义模型
n = 1000000
model = AddModel(n)
# 将模型中所有参数拷贝到GPU端
model.to(device="cuda:0")
# 定义优化器
opt = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(50000):
# 清空优化器缓存
opt.zero_grad()
# 前向传播
output = model()
# 求loss
loss = output.sum()
# 反向传播
loss.backward()
# 更新参数
opt.step()
if epoch % 25 == 0:
print("epoch {:>3d}: loss = {:>8.3f}".format(epoch, loss))
- 训练模型:
python 03-train.py
其他教程
结语
第八十二篇博文写完,开心!!!!
今天,也是充满希望的一天。