00077-PyTorch 杂项


前言

PyTorch 的官网地址为:https://pytorch.org/

PyTorch Tutorials 的地址为:https://pytorch.org/tutorials/

操作系统:Ubuntu 18.04.6 LTS

参考文档

  1. SAVE AND LOAD THE MODEL

保存模型

源教程地址: https://pytorch.org/tutorials/beginner/basics/saveloadrun_tutorial.html .

In this section we will look at how to persist model state with saving, loading and running model predictions.

import torch
import torchvision.models as models

Saving and Loading Model Weights

PyTorch models store the learned parameters in an internal state dictionary, called state_dict. These can be persisted via the torch.save method:

model = models.vgg16(weights='IMAGENET1K_V1')
torch.save(model.state_dict(), 'model_weights.pth')

To load model weights, you need to create an instance of the same model first, and then load the parameters using load_state_dict() method.

model = models.vgg16() # we do not specify ``weights``, i.e. create untrained model
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()

be sure to call model.eval() method before inferencing to set the dropout and batch normalization layers to evaluation mode. Failing to do this will yield inconsistent inference results.

Saving and Loading Models with Shapes

When loading model weights, we needed to instantiate the model class first, because the class defines the structure of a network. We might want to save the structure of this class together with the model, in which case we can pass model (and not model.state_dict()) to the saving function:

torch.save(model, 'model.pth')

We can then load the model like this:

model = torch.load('model.pth')

This approach uses Python pickle module when serializing the model, thus it relies on the actual class definition to be available when loading the model.

  1. Saving and Loading a General Checkpoint in PyTorch

结语

第七十七篇博文写完,开心!!!!

今天,也是充满希望的一天。


文章作者: LuYF-Lemon-love
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 LuYF-Lemon-love !
  目录