00072-Streamlit 学习笔记


前言

Streamlit 能够快速的在 Web 上展示您的 Python 和你的深度学习模型。

A faster way to build and share data apps

Streamlit turns data scripts into shareable web apps in minutes.
All in pure Python. No front‑end experience required.

  1. Streamlit 官网

  2. Streamlit 官方文档

  3. 快速开始

本文运行的源代码: https://github.com/LuYF-Lemon-love/susu-streamlit .

操作系统:Windows 10 专业版

参考文档

  1. Streamlit 官网

  2. Streamlit 官方文档

  3. 快速开始

安装

源教程链接: https://docs.streamlit.io/library/get-started/installation .

前置条件

python >= 3.8

创建虚拟环境

python -m venv env
source env/bin/activate
pip install --upgrade pip
which python

安装 (Linux)

pip install streamlit

验证安装 (如果代码在服务器,可以利用 VSCode 转发端口(8501)):

streamlit hello

现在你能利用 Streamlit 让用户和 Python 代码交互:

streamlit run myfile.py

主要概念

源教程链接: https://docs.streamlit.io/library/get-started/main-concepts .

Streamlit 主要使用方式如下:

streamlit run your_script.py [-- script args]

之后将在你的默认浏览器上打开以 app,该应用程序是您的画布,您可以在其中绘制图表、文本、小部件、表格等。

st.text 将会绘制纯文本,st.line_chart 将会绘制一个线表。

When passing your script some custom arguments, they must be passed after two dashes. Otherwise the arguments get interpreted as arguments to Streamlit itself.

其他的使用方式:

# Running
python -m streamlit run your_script.py

# is equivalent to:
streamlit run your_script.py

开发流程

Streamlit 会自动的检测源代码的变化,并自动的在 app 上更新。

数据流

Any time something must be updated on the screen, Streamlit reruns your entire Python script from top to bottom.

This can happen in two situations:

Whenever you modify your app’s source code.

Whenever a user interacts with widgets in the app. For example, when dragging a slider, entering text in an input box, or clicking a button.

And to make all of this fast and seamless, Streamlit does some heavy lifting for you behind the scenes. A big player in this story is the @st.cache_data decorator, which allows developers to skip certain costly computations when their apps rerun.

展示数据

使用 magic 展示数据

"""
# My first app
Here's our first attempt at using data to create a table:
"""

import streamlit as st
import pandas as pd
df = pd.DataFrame({
  'first column': [1, 2, 3, 4],
  'second column': [10, 20, 30, 40]
})

df

一旦 Streamlit 看到单独一行的变量或字面值,它将自动的利用 st.write() 写到 app 中。

写一个 data frame

You can pass almost anything to st.write(): text, data, Matplotlib figures, Altair charts, and more. Don’t worry, Streamlit will figure it out and render things the right way.

import streamlit as st
import pandas as pd

st.write("Here's our first attempt at using data to create a table:")
st.write(pd.DataFrame({
    'first column': [1, 2, 3, 4],
    'second column': [10, 20, 30, 40]
}))

也有一些其他的方法 (st.dataframe()st.table()) 展示数据。如果自定义样式请使用特定的方法,下面使用 st.dataframe() 展示一个交互性的表格.

import streamlit as st
import numpy as np

dataframe = np.random.randn(10, 20)
st.dataframe(dataframe)

下面我们使用 Pandas Styler object 高亮一些元素.

import streamlit as st
import numpy as np
import pandas as pd

dataframe = pd.DataFrame(
    np.random.randn(10, 20),
    columns=('col %d' % i for i in range(20)))

st.dataframe(dataframe.style.highlight_max(axis=0))

对于静态表格请使用 st.table()

import streamlit as st
import numpy as np
import pandas as pd

dataframe = pd.DataFrame(
    np.random.randn(10, 20),
    columns=('col %d' % i for i in range(20)))
st.table(dataframe)

动态(上)和静态(下)

绘制 line chart

你能使用 st.line_chart() 绘制一个线表。

import streamlit as st
import numpy as np
import pandas as pd

chart_data = pd.DataFrame(
     np.random.randn(20, 3),
     columns=['a', 'b', 'c'])

st.line_chart(chart_data)

绘制 map

能够使用 st.map() 绘制一个 map。

import streamlit as st
import numpy as np
import pandas as pd

map_data = pd.DataFrame(
    np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
    columns=['lat', 'lon'])

st.map(map_data)

Widgets

你能加上如下 widgets: st.slider()st.button()st.selectbox()

你可以将 widgets 看成变量。

import streamlit as st
x = st.slider('x')  # 👈 this is a widget
st.write(x, 'squared is', x * x)

你也可以为 widgets 指定名字,进而通过名字访问:

import streamlit as st
st.text_input("Your name", key="name")

# You can access the value at any point with:
st.session_state.name

checkboxes

使用复选框显示/隐藏数据 (st.checkbox())

import streamlit as st
import numpy as np
import pandas as pd

if st.checkbox('Show dataframe'):
    chart_data = pd.DataFrame(
       np.random.randn(20, 3),
       columns=['a', 'b', 'c'])

    chart_data

selectbox

您能使用 st.selectbox 做出选择。

import streamlit as st
import pandas as pd

df = pd.DataFrame({
    'first column': [1, 2, 3, 4],
    'second column': [10, 20, 30, 40]
    })

option = st.selectbox(
    'Which number do you like best?',
     df['first column'])

'You selected: ', option

Layout

Streamlit makes it easy to organize your widgets in a left panel sidebar with st.sidebar. Each element that’s passed to st.sidebar is pinned to the left, allowing users to focus on the content in your app while still having access to UI controls.

For example, if you want to add a selectbox and a slider to a sidebar, use st.sidebar.slider and st.sidebar.selectbox instead of st.slider and st.selectbox:

import streamlit as st

# Add a selectbox to the sidebar:
add_selectbox = st.sidebar.selectbox(
    'How would you like to be contacted?',
    ('Email', 'Home phone', 'Mobile phone')
)

# Add a slider to the sidebar:
add_slider = st.sidebar.slider(
    'Select a range of values',
    0.0, 100.0, (25.0, 75.0)
)

Beyond the sidebar, Streamlit offers several other ways to control the layout of your app. st.columns lets you place widgets side-by-side, and st.expander lets you conserve space by hiding away large content.

import streamlit as st

left_column, right_column = st.columns(2)
# You can use a column just like st.sidebar:
left_column.button('Press me!')

# Or even better, call Streamlit functions inside a "with" block:
with right_column:
    chosen = st.radio(
        'Sorting hat',
        ("Gryffindor", "Ravenclaw", "Hufflepuff", "Slytherin"))
    st.write(f"You are in {chosen} house!")

单选按钮: st.radio

st.echo and st.spinner are not currently supported inside the sidebar or layout options. Rest assured, though, we’re currently working on adding support for those too!

进度条

你也可以加入进度条: st.progress()

import streamlit as st
import time

'Starting a long computation...'

# Add a placeholder
latest_iteration = st.empty()
bar = st.progress(0)

for i in range(100):
  # Update the progress bar with each iteration.
  latest_iteration.text(f'Iteration {i+1}')
  bar.progress(i + 1)
  time.sleep(0.1)

'...and now we\'re done!'

主题

原生支持 Light 和 Dark 主题,默认使用操作系统和浏览器的设置,如果未设置使用 Light。

你也能手动设置。

When you’re happy with your work, themes can be saved by setting config options in the [theme] config section. After you’ve defined a theme for your app, it will appear as “Custom Theme” in the theme selector and will be applied by default instead of the included Light and Dark themes.

The theme editor menu is available only in local development. If you’ve deployed your app using Streamlit Community Cloud, the “Edit active theme” button will no longer be displayed in the “Settings” menu.

Another way to experiment with different theme colors is to turn on the “Run on save” option, edit your config.toml file, and watch as your app reruns with the new theme colors applied.

Caching

你可以使用两个装饰器 (st.cache_datast.cache_resource) 缓存函数。

@st.cache_data
def long_running_function(param1, param2):
    return
  • st.cache_data is the recommended way to cache computations that return data: loading a DataFrame from CSV, transforming a NumPy array, querying an API, or any other function that returns a serializable data object (str, int, float, DataFrame, array, list, …). It creates a new copy of the data at each function call, making it safe against mutations and race conditions. The behavior of st.cache_data is what you want in most cases – so if you’re unsure, start with st.cache_data and see if it works!

  • st.cache_resource is the recommended way to cache global resources like ML models or database connections – unserializable objects that you don’t want to load multiple times. Using it, you can share these resources across all reruns and sessions of an app without copying or duplication. Note that any mutations to the cached return value directly mutate the object in the cache (more details below).

Pages

Streamlit 提供了一种容易的方式来创建多页应用程序。

We designed this feature so that building a multipage app is as easy as building a single-page app! Just add more pages to an existing app as follows:

  1. In the folder containing your main script, create a new pages folder. Let’s say your main script is named main_page.py.

  2. Add new .py files in the pages folder to add more pages to your app.

  3. Run streamlit run main_page.py as usual.

That’s it! The main_page.py script will now correspond to the main page of your app. And you’ll see the other scripts from the pages folder in the sidebar page selector. For example:

main_page.py

import streamlit as st

st.markdown("# Main page 🎈")
st.sidebar.markdown("# Main page 🎈")

pages/page_2.py

import streamlit as st

st.markdown("# Page 2 ❄️")
st.sidebar.markdown("# Page 2 ❄️")

pages/page_3.py

import streamlit as st

st.markdown("# Page 3 🎉")
st.sidebar.markdown("# Page 3 🎉")

运行 streamlit run main_page.py

App model

Now that you know a little more about all the individual pieces, let’s close the loop and review how it works together:

  1. Streamlit apps are Python scripts that run from top to bottom

  2. Every time a user opens a browser tab pointing to your app, the script is re-executed

  3. As the script executes, Streamlit draws its output live in a browser

  4. Scripts use the Streamlit cache to avoid recomputing expensive functions, so updates happen very fast

  5. Every time a user interacts with a widget, your script is re-executed and the output value of that widget is set to the new value during that run.

  6. Streamlit apps can contain multiple pages, which are defined in separate .py files in a pages folder.

创建一个 app

源教程链接: https://docs.streamlit.io/library/get-started/create-an-app .

创建你的第一个 app

  1. 创建一个 uber_pickups.py
import streamlit as st
import pandas as pd
import numpy as np
  1. 设置 app 的标题。
st.title('Uber pickups in NYC')
  1. 运行 app。
streamlit run uber_pickups.py

Fetch some data

  1. 加载数据的函数:
DATE_COLUMN = 'date/time'
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
         'streamlit-demo-data/uber-raw-data-sep14.csv.gz')

def load_data(nrows):
    data = pd.read_csv(DATA_URL, nrows=nrows)
    lowercase = lambda x: str(x).lower()
    data.rename(lowercase, axis='columns', inplace=True)
    data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
    return data

该函数接受一个参数(nrows),该参数指定要加载的行数。

  1. 测试函数:
# Create a text element and let the reader know the data is loading.
data_load_state = st.text('Loading data...')
# Load 10,000 rows of data into the dataframe.
data = load_data(10000)
# Notify the reader that the data was successfully loaded.
data_load_state.text('Loading data...done!')

You’ll see a few buttons in the upper-right corner of your app asking if you’d like to rerun the app. Choose Always rerun, and you’ll see your changes automatically each time you save.

您不想在每次更新应用程序时重新加载数据 - 幸运的是,Streamlit允许您缓存数据。

缓存

  1. load_data 声明之前添加 @st.cache_data
@st.cache_data
def load_data(nrows):
  1. 先在浏览器刷新一下界面。

  2. 用下面的代码替换 data_load_state.text('Loading data...done!')

data_load_state.text("Done! (using st.cache_data)")

限制

  1. Streamlit will only check for changes within the current working directory. If you upgrade a Python library, Streamlit’s cache will only notice this if that library is installed inside your working directory.

  2. If your function is not deterministic (that is, its output depends on random numbers), or if it pulls data from an external time-varying source (for example, a live stock market ticker service) the cached value will be none-the-wiser.

  3. Lastly, you should avoid mutating the output of a function cached with st.cache_data since cached values are stored by reference.

检查原始数据

加一个副标题:

st.subheader('Raw data')
st.write(data)

绘制直方图

  1. 加入新的副标题:
st.subheader('Number of pickups by hour')
  1. 利用 NumPy 生成直方图:
hist_values = np.histogram(
    data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
  1. 使用 st.bar_chart() 画直方图:
st.bar_chart(hist_values)

To draw this diagram we used Streamlit’s native bar_chart() method, but it’s important to know that Streamlit supports more complex charting libraries like Altair, Bokeh, Plotly, Matplotlib and more.

Plot data on a map

  1. 加一个副标题:
st.subheader('Map of all pickups')
  1. 使用 st.map()
st.map(data)


Let’s redraw the map to show the concentration of pickups at 17:00.

  1. 找到下面代码段:
st.subheader('Map of all pickups')
st.map(data)
  1. 用下面的代码段替换它:
hour_to_filter = 17
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]
st.subheader(f'Map of all pickups at {hour_to_filter}:00')
st.map(filtered_data)

To draw this map we used the st.map function that’s built into Streamlit, but if you’d like to visualize complex map data, we encourage you to take a look at the st.pydeck_chart.

Filter results with a slider

找到hour_to_filter并将其替换为以下代码片段:

hour_to_filter = st.slider('hour', 0, 23, 17)  # min: 0h, max: 23h, default: 17h

Use a button to toggle data

  1. 找到以下行:
st.subheader('Raw data')
st.write(data)
  1. 将这些行替换为以下代码:
if st.checkbox('Show raw data'):
    st.subheader('Raw data')
    st.write(data)

Let’s put it all together

import streamlit as st
import pandas as pd
import numpy as np

st.title('Uber pickups in NYC')

DATE_COLUMN = 'date/time'
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
            'streamlit-demo-data/uber-raw-data-sep14.csv.gz')

@st.cache_data
def load_data(nrows):
    data = pd.read_csv(DATA_URL, nrows=nrows)
    lowercase = lambda x: str(x).lower()
    data.rename(lowercase, axis='columns', inplace=True)
    data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
    return data

data_load_state = st.text('Loading data...')
data = load_data(10000)
data_load_state.text("Done! (using st.cache_data)")

if st.checkbox('Show raw data'):
    st.subheader('Raw data')
    st.write(data)

st.subheader('Number of pickups by hour')
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
st.bar_chart(hist_values)

# Some number in the range 0-23
hour_to_filter = st.slider('hour', 0, 23, 17)
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]

st.subheader('Map of all pickups at %s:00' % hour_to_filter)
st.map(filtered_data)

Share your app

After you’ve built a Streamlit app, it’s time to share it! To show it off to the world you can use Streamlit Community Cloud to deploy, manage, and share your app for free.

It works in 3 simple steps:

  1. Put your app in a public GitHub repo (and make sure it has a requirements.txt!)

  2. Sign into share.streamlit.io

  3. Click ‘Deploy an app’ and then paste in your GitHub URL

That’s it! 🎈 You now have a publicly deployed app that you can share with the world.

Get help

That’s it for getting started, now you can go and build your own apps! If you run into difficulties here are a few things you can do.

  • Check out our community forum and post a question

  • Quick help from command line with streamlit help

  • Go through our Knowledge Base for tips, step-by-step tutorials, and articles that answer your questions about creating and deploying Streamlit apps.

  • Read more documentation! Check out:

    • Advanced features for things like caching, theming, and adding statefulness to apps.

    • API reference for examples of every Streamlit command.

Multipage apps

源教程链接: https://docs.streamlit.io/library/get-started/multipage-apps .

Run a multipage app

运行命令为:

streamlit run [entrypoint file]

The “entrypoint file” is the first page the app will show to the user. Once you have added pages to your app, the entrypoint file appears as the top-most page in the sidebar. You can think of the entrypoint file as your app’s “main page”. For example, say your entrypoint file is Home.py. Then, to run your app, you can run streamlit run Home.py. This will start your app and execute the code in Home.py.

Adding pages

Once you’ve created your entrypoint file, you can add pages by creating .py files in a pages/ directory relative to your entrypoint file. For example, if your entrypoint file is Home.py, then you can create a pages/About.py file to define the “About” page. Here’s a valid directory structure for a multipage app:

Home.py # This is the file you run with "streamlit run"
└─── pages/
  └─── About.py # This is a page
  └─── 2_Page_two.py # This is another page
  └─── 3_😎_three.py # So is this

When adding emojis to filenames, it’s best practice to include a numbered-prefix to make autocompletion in your terminal easier. Terminal-autocomplete can get confused by unicode (which is how emojis are represented).

Pages are defined as .py files in a pages/ directory. The filenames of pages are transformed to page names in the sidebar based on the the rules in the section below. For example, the About.py file will appear as “About” in the sidebar, 2_Page_two.py appears as “Page two”, and 3_😎_three.py appears as “😎 three”:

Only .py files in the pages/ directory will be loaded as pages. Streamlit ignores all other files in the pages/ directory and subdirectories.

How pages are labeled and sorted in the UI

Page labels in the sidebar UI are generated from filenames. They may differ from the page title set in st.set_page_config. Let’s learn what constitutes a valid filename for a page, how pages are displayed in the sidebar, and how pages are sorted.

Valid filenames for pages

Filenames are composed of four different parts:

  1. A number — if the file is prefixed with a number.

  2. A separator — could be _, -, space, or any combination thereof.

  3. A label — which is everything up to, but not including, .py.

  4. The extension — which is always .py.

How pages are displayed in the sidebar

What is displayed in the sidebar is the label part of the filename:

  • If there’s no label, Streamlit uses the number as the label.

  • In the UI, Streamlit beautifies the label by replacing _ with space.

How pages are sorted in the sidebar

Sorting considers numbers in the filename to be actual numbers (integers):

  • Files that have a number appear before files without a number.

  • Files are sorted based on the number (if any), followed by the title (if any).

  • When files are sorted, Streamlit treats the number as an actual number rather than a string. So 03 is the same as 3.

This table shows examples of filenames and their corresponding labels, sorted by the order in which they appear in the sidebar.

Examples:

Filename Rendered label
1 - first page.py first page
12 monkeys.py monkeys
123.py 123
123_hello_dear_world.py hello dear world
_12 monkeys.py 12 monkeys

Emojis can be used to make your page names more fun! For example, a file named 🏠_Home.py will create a page titled “🏠 Home” in the sidebar.

Pages are automatically shown in a nice navigation UI inside the app’s sidebar. When you click on a page in the sidebar UI, Streamlit navigates to that page without reloading the entire frontend — making app browsing incredibly fast!

You can also navigate between pages using URLs. Pages have their own URLs, defined by the file’s label. When multiple files have the same label, Streamlit picks the first one (based on the ordering described above). Users can view a specific page by visiting the page’s URL.

If a user tries to access a URL for a page that does not exist, they will see a modal like the one below, saying the user has requested a page that was not found in the app’s pages/ directory.

Notes

  • Pages support magic commands.

  • Pages support run-on-save. Additionally, when you save a page, this causes a rerun for users currently viewing that exact page.

  • Adding or deleting a page causes the UI to update immediately.

  • Updating pages in the sidebar does not rerun the script.

  • st.set_page_config works at the page level. When you set a title or favicon using st.set_page_config, this applies to the current page only.

  • Pages share the same Python modules globally:

# page1.py
import foo
foo.hello = 123

# page2.py
import foo
st.write(foo.hello)  # If page1 already executed, this should write 123
  • Pages share the same st.session_state:
# page1.py
import streamlit as st
if "shared" not in st.session_state:
   st.session_state["shared"] = True

# page2.py
import streamlit as st
st.write(st.session_state["shared"])
# If page1 already executed, this should write True

You now have a solid understanding of multipage apps. You’ve learned how to structure apps, define pages, and navigate between pages in the user interface. It’s time to create your first multipage app! 🥳

Create a multipage app

源教程链接: https://docs.streamlit.io/library/get-started/multipage-apps/create-a-multipage-app .

In the last section, we learned what it takes to create multipage apps, including how to define pages, structure and run multipage apps, and navigate between pages in the user interface. If you need a refresher, now is a good time to take a look.

In this guide, let’s put our understanding of multipage apps to use by converting the familiar streamlit hello command to a multipage app!

Motivation

Before Streamlit 1.10.0, the streamlit hello command was a large single-page app. As there was no support for multiple pages, we resorted to splitting the app’s content using st.selectbox in the sidebar to choose what content to run. The content is comprised of three demos for plotting, mapping, and dataframes.

Here’s what the code and single-page app looked like:

hello.py

import streamlit as st

def intro():
    import streamlit as st

    st.write("# Welcome to Streamlit! 👋")
    st.sidebar.success("Select a demo above.")

    st.markdown(
        """
        Streamlit is an open-source app framework built specifically for
        Machine Learning and Data Science projects.

        **👈 Select a demo from the dropdown on the left** to see some examples
        of what Streamlit can do!

        ### Want to learn more?

        - Check out [streamlit.io](https://streamlit.io)
        - Jump into our [documentation](https://docs.streamlit.io)
        - Ask a question in our [community
          forums](https://discuss.streamlit.io)

        ### See more complex demos

        - Use a neural net to [analyze the Udacity Self-driving Car Image
          Dataset](https://github.com/streamlit/demo-self-driving)
        - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
    """
    )

def mapping_demo():
    import streamlit as st
    import pandas as pd
    import pydeck as pdk

    from urllib.error import URLError

    st.markdown(f"# {list(page_names_to_funcs.keys())[2]}")
    st.write(
        """
        This demo shows how to use
[`st.pydeck_chart`](https://docs.streamlit.io/library/api-reference/charts/st.pydeck_chart)
to display geospatial data.
"""
    )

    @st.cache_data
    def from_data_file(filename):
        url = (
            "http://raw.githubusercontent.com/streamlit/"
            "example-data/master/hello/v1/%s" % filename
        )
        return pd.read_json(url)

    try:
        ALL_LAYERS = {
            "Bike Rentals": pdk.Layer(
                "HexagonLayer",
                data=from_data_file("bike_rental_stats.json"),
                get_position=["lon", "lat"],
                radius=200,
                elevation_scale=4,
                elevation_range=[0, 1000],
                extruded=True,
            ),
            "Bart Stop Exits": pdk.Layer(
                "ScatterplotLayer",
                data=from_data_file("bart_stop_stats.json"),
                get_position=["lon", "lat"],
                get_color=[200, 30, 0, 160],
                get_radius="[exits]",
                radius_scale=0.05,
            ),
            "Bart Stop Names": pdk.Layer(
                "TextLayer",
                data=from_data_file("bart_stop_stats.json"),
                get_position=["lon", "lat"],
                get_text="name",
                get_color=[0, 0, 0, 200],
                get_size=15,
                get_alignment_baseline="'bottom'",
            ),
            "Outbound Flow": pdk.Layer(
                "ArcLayer",
                data=from_data_file("bart_path_stats.json"),
                get_source_position=["lon", "lat"],
                get_target_position=["lon2", "lat2"],
                get_source_color=[200, 30, 0, 160],
                get_target_color=[200, 30, 0, 160],
                auto_highlight=True,
                width_scale=0.0001,
                get_width="outbound",
                width_min_pixels=3,
                width_max_pixels=30,
            ),
        }
        st.sidebar.markdown("### Map Layers")
        selected_layers = [
            layer
            for layer_name, layer in ALL_LAYERS.items()
            if st.sidebar.checkbox(layer_name, True)
        ]
        if selected_layers:
            st.pydeck_chart(
                pdk.Deck(
                    map_style="mapbox://styles/mapbox/light-v9",
                    initial_view_state={
                        "latitude": 37.76,
                        "longitude": -122.4,
                        "zoom": 11,
                        "pitch": 50,
                    },
                    layers=selected_layers,
                )
            )
        else:
            st.error("Please choose at least one layer above.")
    except URLError as e:
        st.error(
            """
            **This demo requires internet access.**

            Connection error: %s
        """
            % e.reason
        )

def plotting_demo():
    import streamlit as st
    import time
    import numpy as np

    st.markdown(f'# {list(page_names_to_funcs.keys())[1]}')
    st.write(
        """
        This demo illustrates a combination of plotting and animation with
Streamlit. We're generating a bunch of random numbers in a loop for around
5 seconds. Enjoy!
"""
    )

    progress_bar = st.sidebar.progress(0)
    status_text = st.sidebar.empty()
    last_rows = np.random.randn(1, 1)
    chart = st.line_chart(last_rows)

    for i in range(1, 101):
        new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
        status_text.text("%i%% Complete" % i)
        chart.add_rows(new_rows)
        progress_bar.progress(i)
        last_rows = new_rows
        time.sleep(0.05)

    progress_bar.empty()

    # Streamlit widgets automatically run the script from top to bottom. Since
    # this button is not connected to any other logic, it just causes a plain
    # rerun.
    st.button("Re-run")


def data_frame_demo():
    import streamlit as st
    import pandas as pd
    import altair as alt

    from urllib.error import URLError

    st.markdown(f"# {list(page_names_to_funcs.keys())[3]}")
    st.write(
        """
        This demo shows how to use `st.write` to visualize Pandas DataFrames.

(Data courtesy of the [UN Data Explorer](http://data.un.org/Explorer.aspx).)
"""
    )

    @st.cache_data
    def get_UN_data():
        AWS_BUCKET_URL = "http://streamlit-demo-data.s3-us-west-2.amazonaws.com"
        df = pd.read_csv(AWS_BUCKET_URL + "/agri.csv.gz")
        return df.set_index("Region")

    try:
        df = get_UN_data()
        countries = st.multiselect(
            "Choose countries", list(df.index), ["China", "United States of America"]
        )
        if not countries:
            st.error("Please select at least one country.")
        else:
            data = df.loc[countries]
            data /= 1000000.0
            st.write("### Gross Agricultural Production ($B)", data.sort_index())

            data = data.T.reset_index()
            data = pd.melt(data, id_vars=["index"]).rename(
                columns={"index": "year", "value": "Gross Agricultural Product ($B)"}
            )
            chart = (
                alt.Chart(data)
                .mark_area(opacity=0.3)
                .encode(
                    x="year:T",
                    y=alt.Y("Gross Agricultural Product ($B):Q", stack=None),
                    color="Region:N",
                )
            )
            st.altair_chart(chart, use_container_width=True)
    except URLError as e:
        st.error(
            """
            **This demo requires internet access.**

            Connection error: %s
        """
            % e.reason
        )

page_names_to_funcs = {
    "—": intro,
    "Plotting Demo": plotting_demo,
    "Mapping Demo": mapping_demo,
    "DataFrame Demo": data_frame_demo
}

demo_name = st.sidebar.selectbox("Choose a demo", page_names_to_funcs.keys())
page_names_to_funcs[demo_name]()

Notice how large the file is! Each app “page” is written as a function, and the selectbox is used to pick which page to display. As our app grows, maintaining the code requires a lot of additional overhead. Moreover, we’re limited by the st.selectbox UI to choose which “page” to run, we cannot customize individual page titles with st.set_page_config, and we’re unable to navigate between pages using URLs.

Convert an existing app into a multipage app

Now that we’ve identified the limitations of a single-page app, what can we do about it? Armed with our knowledge from the previous section, we can convert the existing app to be a multipage app, of course! At a high level, we need to perform the following steps:

  1. Create a new pages folder in the same folder where the “entrypoint file” (hello.py) lives

  2. Rename our entrypoint file to Hello.py , so that the title in the sidebar is capitalized

  3. Create three new files inside of pages:

    • pages/1_📈_Plotting_Demo.py

    • pages/2_🌍_Mapping_Demo.py

    • pages/3_📊_DataFrame_Demo.py

  4. Move the contents of the plotting_demo, mapping_demo, and data_frame_demo functions into their corresponding new files from Step 3

  5. Run streamlit run Hello.py to view your newly converted multipage app!

Now, let’s walk through each step of the process and view the corresponding changes in code.

Create the entrypoint file

Hello.py

import streamlit as st

st.set_page_config(
    page_title="Hello",
    page_icon="👋",
)

st.write("# Welcome to Streamlit! 👋")

st.sidebar.success("Select a demo above.")

st.markdown(
    """
    Streamlit is an open-source app framework built specifically for
    Machine Learning and Data Science projects.
    **👈 Select a demo from the sidebar** to see some examples
    of what Streamlit can do!
    ### Want to learn more?
    - Check out [streamlit.io](https://streamlit.io)
    - Jump into our [documentation](https://docs.streamlit.io)
    - Ask a question in our [community
        forums](https://discuss.streamlit.io)
    ### See more complex demos
    - Use a neural net to [analyze the Udacity Self-driving Car Image
        Dataset](https://github.com/streamlit/demo-self-driving)
    - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
"""
)

We rename our entrypoint file to Hello.py , so that the title in the sidebar is capitalized and only the code for the intro page is included. Additionally, we’re able to customize the page title and favicon — as it appears in the browser tab with st.set_page_config. We can do so for each of our pages too!

Notice how the sidebar does not contain page labels as we haven’t created any pages yet.

Create multiple pages

A few things to remember here:

  1. We can change the ordering of pages in our MPA by adding numbers to the beginning of each Python file. If we add a 1 to the front of our file name, Streamlit will put that file first in the list.

  2. The name of each Streamlit app is determined by the file name, so to change the app name you need to change the file name!

  3. We can add some fun to our app by adding emojis to our file names that will render in our Streamlit app.

  4. Each page will have its own URL, defined by the name of the file.

Check out how we do all this below! For each new page, we create a new file inside the pages folder, and add the appropriate demo code into it.

pages/1_📈_Plotting_Demo.py

import streamlit as st
import time
import numpy as np

st.set_page_config(page_title="Plotting Demo", page_icon="📈")

st.markdown("# Plotting Demo")
st.sidebar.header("Plotting Demo")
st.write(
    """This demo illustrates a combination of plotting and animation with
Streamlit. We're generating a bunch of random numbers in a loop for around
5 seconds. Enjoy!"""
)

progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
last_rows = np.random.randn(1, 1)
chart = st.line_chart(last_rows)

for i in range(1, 101):
    new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
    status_text.text("%i%% Complete" % i)
    chart.add_rows(new_rows)
    progress_bar.progress(i)
    last_rows = new_rows
    time.sleep(0.05)

progress_bar.empty()

# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")

pages/2_🌍_Mapping_Demo.py

import streamlit as st
import pandas as pd
import pydeck as pdk
from urllib.error import URLError

st.set_page_config(page_title="Mapping Demo", page_icon="🌍")

st.markdown("# Mapping Demo")
st.sidebar.header("Mapping Demo")
st.write(
    """This demo shows how to use
[`st.pydeck_chart`](https://docs.streamlit.io/library/api-reference/charts/st.pydeck_chart)
to display geospatial data."""
)


@st.cache_data
def from_data_file(filename):
    url = (
        "http://raw.githubusercontent.com/streamlit/"
        "example-data/master/hello/v1/%s" % filename
    )
    return pd.read_json(url)


try:
    ALL_LAYERS = {
        "Bike Rentals": pdk.Layer(
            "HexagonLayer",
            data=from_data_file("bike_rental_stats.json"),
            get_position=["lon", "lat"],
            radius=200,
            elevation_scale=4,
            elevation_range=[0, 1000],
            extruded=True,
        ),
        "Bart Stop Exits": pdk.Layer(
            "ScatterplotLayer",
            data=from_data_file("bart_stop_stats.json"),
            get_position=["lon", "lat"],
            get_color=[200, 30, 0, 160],
            get_radius="[exits]",
            radius_scale=0.05,
        ),
        "Bart Stop Names": pdk.Layer(
            "TextLayer",
            data=from_data_file("bart_stop_stats.json"),
            get_position=["lon", "lat"],
            get_text="name",
            get_color=[0, 0, 0, 200],
            get_size=15,
            get_alignment_baseline="'bottom'",
        ),
        "Outbound Flow": pdk.Layer(
            "ArcLayer",
            data=from_data_file("bart_path_stats.json"),
            get_source_position=["lon", "lat"],
            get_target_position=["lon2", "lat2"],
            get_source_color=[200, 30, 0, 160],
            get_target_color=[200, 30, 0, 160],
            auto_highlight=True,
            width_scale=0.0001,
            get_width="outbound",
            width_min_pixels=3,
            width_max_pixels=30,
        ),
    }
    st.sidebar.markdown("### Map Layers")
    selected_layers = [
        layer
        for layer_name, layer in ALL_LAYERS.items()
        if st.sidebar.checkbox(layer_name, True)
    ]
    if selected_layers:
        st.pydeck_chart(
            pdk.Deck(
                map_style="mapbox://styles/mapbox/light-v9",
                initial_view_state={
                    "latitude": 37.76,
                    "longitude": -122.4,
                    "zoom": 11,
                    "pitch": 50,
                },
                layers=selected_layers,
            )
        )
    else:
        st.error("Please choose at least one layer above.")
except URLError as e:
    st.error(
        """
        **This demo requires internet access.**
        Connection error: %s
    """
        % e.reason
    )

pages/3_📊_DataFrame_Demo.py

import streamlit as st
import pandas as pd
import altair as alt
from urllib.error import URLError

st.set_page_config(page_title="DataFrame Demo", page_icon="📊")

st.markdown("# DataFrame Demo")
st.sidebar.header("DataFrame Demo")
st.write(
    """This demo shows how to use `st.write` to visualize Pandas DataFrames.
(Data courtesy of the [UN Data Explorer](http://data.un.org/Explorer.aspx).)"""
)


@st.cache_data
def get_UN_data():
    AWS_BUCKET_URL = "http://streamlit-demo-data.s3-us-west-2.amazonaws.com"
    df = pd.read_csv(AWS_BUCKET_URL + "/agri.csv.gz")
    return df.set_index("Region")


try:
    df = get_UN_data()
    countries = st.multiselect(
        "Choose countries", list(df.index), ["China", "United States of America"]
    )
    if not countries:
        st.error("Please select at least one country.")
    else:
        data = df.loc[countries]
        data /= 1000000.0
        st.write("### Gross Agricultural Production ($B)", data.sort_index())

        data = data.T.reset_index()
        data = pd.melt(data, id_vars=["index"]).rename(
            columns={"index": "year", "value": "Gross Agricultural Product ($B)"}
        )
        chart = (
            alt.Chart(data)
            .mark_area(opacity=0.3)
            .encode(
                x="year:T",
                y=alt.Y("Gross Agricultural Product ($B):Q", stack=None),
                color="Region:N",
            )
        )
        st.altair_chart(chart, use_container_width=True)
except URLError as e:
    st.error(
        """
        **This demo requires internet access.**
        Connection error: %s
    """
        % e.reason
    )

With our additional pages created, we can now put it all together in the final step below.

Run the multipage app

To run your newly converted multipage app, run:

streamlit run Hello.py

That’s it! The Hello.py script now corresponds to the main page of your app, and other scripts that Streamlit finds in the pages folder will also be present in the new page selector that appears in the sidebar.

Next steps

Congratulations! 🎉 If you’ve read this far, chances are you’ve learned to create both single-page and multipage apps. Where you go from here is entirely up to your creativity! We’re excited to see what you’ll build now that adding additional pages to your apps is easier than ever. Try adding more pages to the app we’ve just built as an exercise. Also, stop by the forum to show off your multipage apps with the Streamlit community! 🎈

Here are a few resources to help you get started:

  • Deploy your app for free on Streamlit’s Community Cloud.

  • Post a question or share your multipage app on our community forum.

  • Check out our documentation on multipage apps.

  • Read through Advanced features for things like caching, theming, and adding statefulness to apps.

  • Browse our API reference for examples of every Streamlit command.

结语

第七十二篇博文写完,开心!!!!

今天,也是充满希望的一天。


文章作者: LuYF-Lemon-love
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 LuYF-Lemon-love !
  目录