00040-Drug Repurposing for Covid-19 via Disease


前言

Drug Repurposing Knowledge Graph (DRKG) is a comprehensive biological knowledge graph relating genes, compounds, diseases, biological processes, side effects and symptoms. DRKG includes information from six existing databases including DrugBank, Hetionet, GNBR, String, IntAct and DGIdb, and data collected from recent publications particularly related to Covid19. It includes 97,238 entities belonging to 13 entity-types; and 5,874,261 triplets belonging to 107 edge-types. These 107 edge-types show a type of interaction between one of the 13 entity-type pairs (multiple types of interactions are possible between the same entity-pair), as depicted in the figure below. It also includes a bunch of notebooks about how to explore and analysis the DRKG using statistical methodologies or using machine learning methodologies such as knowledge graph embedding.

Figure: Interactions in the DRKG. The number next to an edge indicates the number of relation-types for that entity-pair in DRKG.

原项目地址: https://github.com/gnn4dr/DRKG .

操作系统:Ubuntu 20.04.5 LTS

参考文档

  1. Drug Repurposing Knowledge Graph (DRKG)

配置环境

下载 DRKG

为了分析 DRKG, 可以直接通过下面的命令下载 DRKG.

$ wget https://dgl-data.s3-us-west-2.amazonaws.com/dataset/DRKG/drkg.tar.gz

(不推荐) 如果直接使用项目仓库中的 notebooks , 不需要手动的下载 DRKG, 因为会自动下载 DRKG.

当你解压 drkg.tar.gz, 将会发现下面的文件:

./drkg.tsv
./entity2src.tsv
./relation_glossary.tsv
./embed
./embed/DRKG_TransE_l2_relation.npy
./embed/relations.tsv
./embed/entities.tsv
./embed/Readme.md
./embed/DRKG_TransE_l2_entity.npy
./embed/mol_contextpred.npy
./embed/mol_masking.npy
./embed/mol_infomax.npy
./embed/mol_edgepred.npy

版本

Python 版本 (参考):

$ python --version
Python 3.9.7

Python 包版本 (参考):

Package                            Version
---------------------------------- --------------------
jupyter                            1.0.0
numpy                              1.20.3
requests                           2.26.0
torch                              1.13.0

真正的配置流程

最简单的方法就是直接 git clone 项目仓库.

$ git clone https://github.com/gnn4dr/DRKG.git
$ cd DRKG
$ mkdir data
$ cd data

直接在浏览器的地址栏输入 https://dgl-data.s3-us-west-2.amazonaws.com/dataset/DRKG/drkg.tar.gz, 下载到上面的 data 目录中, 然后解压, 结果如下.

$ tree data/
data/
├── drkg
│   ├── drkg.tsv
│   ├── embed
│   │   ├── DRKG_TransE_l2_entity.npy
│   │   ├── DRKG_TransE_l2_relation.npy
│   │   ├── entities.tsv
│   │   ├── mol_contextpred.npy
│   │   ├── mol_edgepred.npy
│   │   ├── mol_infomax.npy
│   │   ├── mol_masking.npy
│   │   ├── Readme.md
│   │   └── relations.tsv
│   ├── entity2src.tsv
│   └── relation_glossary.tsv
└── drkg.tar.gz

2 directories, 13 files
$

说明

本文介绍的内容是项目的 DRKG/drug_repurpose/COVID-19_drug_repurposing.ipynb 的内容, 只是额外的打印了一些帮助输出.

COVID-19_drug_repurposing.ipynb shows how to do drug repurposing for Covid-19 by predicting links between the disease entities and the drug entitites in the DRKG. The target disease entities are listed in the notebook and the candidate drug entities are listed in infer_drug.tsv. The drugs are all from Drugbank and we exclude drugs with molecule weight less than 250 daltons which results in 8104 candidates. Two edge types are chosen here: Hetionet::CtD::Compound:Disease and GNBR::T::Compound:Disease, which represent the treatment relationship between a certain drug for a disease. To evaluate the repurposed drugs, we compare them with the clinical drugs as there is no treatment for Covid-19 right now. The list of clinical drugs are shown in COVID19_clinical_trial_drugs.tsv which is collected from http://www.covid19-trials.com/.

COVID-19 Drug Repurposing via disease-compounds relations

This example shows how to do drug repurposing using DRKG even with the pretrained model.

At the very beginning we need to collect a list of disease of Corona-Virus(COV) in DRKG. We can easily use the Disease ID that DRKG uses for encoding the disease. Here we take all of the COV disease as target.

COV_disease_list = [
'Disease::SARS-CoV2 E',
'Disease::SARS-CoV2 M',
'Disease::SARS-CoV2 N',
'Disease::SARS-CoV2 Spike',
'Disease::SARS-CoV2 nsp1',
'Disease::SARS-CoV2 nsp10',
'Disease::SARS-CoV2 nsp11',
'Disease::SARS-CoV2 nsp12',
'Disease::SARS-CoV2 nsp13',
'Disease::SARS-CoV2 nsp14',
'Disease::SARS-CoV2 nsp15',
'Disease::SARS-CoV2 nsp2',
'Disease::SARS-CoV2 nsp4',
'Disease::SARS-CoV2 nsp5',
'Disease::SARS-CoV2 nsp5_C145A',
'Disease::SARS-CoV2 nsp6',
'Disease::SARS-CoV2 nsp7',
'Disease::SARS-CoV2 nsp8',
'Disease::SARS-CoV2 nsp9',
'Disease::SARS-CoV2 orf10',
'Disease::SARS-CoV2 orf3a',
'Disease::SARS-CoV2 orf3b',
'Disease::SARS-CoV2 orf6',
'Disease::SARS-CoV2 orf7a',
'Disease::SARS-CoV2 orf8',
'Disease::SARS-CoV2 orf9b',
'Disease::SARS-CoV2 orf9c',
'Disease::MESH:D045169',
'Disease::MESH:D045473',
'Disease::MESH:D001351',
'Disease::MESH:D065207',
'Disease::MESH:D028941',
'Disease::MESH:D058957',
'Disease::MESH:D006517'
]
len(COV_disease_list)
34
COV_disease_list[:3]
['Disease::SARS-CoV2 E', 'Disease::SARS-CoV2 M', 'Disease::SARS-CoV2 N']

Candidate drugs

Now we use FDA-approved drugs in Drugbank as candidate drugs. (we exclude drugs with molecule weight < 250) The drug list is in infer_drug.tsv.

import csv

# Load entity file
drug_list = []
with open("./infer_drug.tsv", newline='', encoding='utf-8') as csvfile:
    reader = csv.DictReader(csvfile, delimiter='\t', fieldnames=['drug','ids'])
    for row_val in reader:
        drug_list.append(row_val['drug'])
len(drug_list)
8104
drug_list[:3]
['Compound::DB00605', 'Compound::DB00983', 'Compound::DB01240']

Treatment relation

Two treatment relations in this context

treatment = ['Hetionet::CtD::Compound:Disease','GNBR::T::Compound:Disease']
treatment
['Hetionet::CtD::Compound:Disease', 'GNBR::T::Compound:Disease']

Get pretrained model

We can directly use the pretrianed model to do drug repurposing.

import numpy as np
import sys
sys.path.insert(1, '../utils')
from utils import download_and_extract
download_and_extract()
entity_idmap_file = '../data/drkg/embed/entities.tsv'
relation_idmap_file = '../data/drkg/embed/relations.tsv'

Get embeddings for diseases and drugs

# Get drugname/disease name to entity ID mappings
entity_map = {}
entity_id_map = {}
relation_map = {}
with open(entity_idmap_file, newline='', encoding='utf-8') as csvfile:
    reader = csv.DictReader(csvfile, delimiter='\t', fieldnames=['name','id'])
    for row_val in reader:
        entity_map[row_val['name']] = int(row_val['id'])
        entity_id_map[int(row_val['id'])] = row_val['name']
        
with open(relation_idmap_file, newline='', encoding='utf-8') as csvfile:
    reader = csv.DictReader(csvfile, delimiter='\t', fieldnames=['name','id'])
    for row_val in reader:
        relation_map[row_val['name']] = int(row_val['id'])
        
# handle the ID mapping
drug_ids = []
disease_ids = []
for drug in drug_list:
    drug_ids.append(entity_map[drug])
    
for disease in COV_disease_list:
    disease_ids.append(entity_map[disease])

treatment_rid = [relation_map[treat]  for treat in treatment]
len(disease_ids),len(drug_ids),len(treatment_rid)
(34, 8104, 2)
disease_ids[:3],drug_ids[:3],treatment_rid
([9079, 9085, 9110], [9475, 11010, 7486], [68, 35])
# Load embeddings
import torch as th
entity_emb = np.load('../data/drkg/embed/DRKG_TransE_l2_entity.npy')
rel_emb = np.load('../data/drkg/embed/DRKG_TransE_l2_relation.npy')

drug_ids = th.tensor(drug_ids).long()
disease_ids = th.tensor(disease_ids).long()
treatment_rid = th.tensor(treatment_rid)

drug_emb = th.tensor(entity_emb[drug_ids])
treatment_embs = [th.tensor(rel_emb[rid]) for rid in treatment_rid]
disease_ids[:3],drug_ids[:3],treatment_rid
(tensor([9079, 9085, 9110]), tensor([ 9475, 11010,  7486]), tensor([68, 35]))
drug_emb.shape
torch.Size([8104, 400])

Drug Repurposing Based on Edge Score

We use following algorithm to calculate the edge score. Note, here we use logsigmiod to make all scores < 0. The larger the score is, the stronger the $h$ will have $r$ with $t$.

$\mathbf{d} = \gamma - ||\mathbf{h}+\mathbf{r}-\mathbf{t}||_{2}$

$\mathbf{score} = \log\left(\frac{1}{1+\exp(\mathbf{-d})}\right)$

When doing drug repurposing, we only use the treatment related relations.

import torch.nn.functional as fn

gamma=12.0
def transE_l2(head, rel, tail):
    score = head + rel - tail
    return gamma - th.norm(score, p=2, dim=-1)

scores_per_disease = []
dids = []
for rid in range(len(treatment_embs)):
    treatment_emb=treatment_embs[rid]
    for disease_id in disease_ids:
        disease_emb = entity_emb[disease_id]
        score = fn.logsigmoid(transE_l2(drug_emb, treatment_emb, disease_emb))
        scores_per_disease.append(score)
        dids.append(drug_ids)
scores = th.cat(scores_per_disease)
dids = th.cat(dids)
scores.shape, dids.shape, 2*34*8104
(torch.Size([551072]), torch.Size([551072]), 551072)
# sort scores in decending order
idx = th.flip(th.argsort(scores), dims=[0])
scores = scores[idx].numpy()
dids = dids[idx].numpy()

scores.shape, dids.shape, 2*34*8104
((551072,), (551072,), 551072)

Now we output proposed treatments

_, unique_indices = np.unique(dids, return_index=True)
topk=100
topk_indices = np.sort(unique_indices)[:topk]
proposed_dids = dids[topk_indices]
proposed_scores = scores[topk_indices]

We select top K relevent drugs according the edge score.

for i in range(topk):
    drug = int(proposed_dids[i])
    score = proposed_scores[i]
    
    print("{}\t{}".format(entity_id_map[drug], score))
Compound::DB00811	-0.21416780352592468
Compound::DB00993	-0.8350887298583984
Compound::DB00635	-0.8974790573120117
Compound::DB01082	-0.985488772392273
Compound::DB01234	-0.9984012842178345
Compound::DB00982	-1.0160716772079468
Compound::DB00563	-1.0189464092254639
Compound::DB00290	-1.0641062259674072
Compound::DB01394	-1.080676555633545
Compound::DB01222	-1.084547519683838
Compound::DB00415	-1.0853973627090454
Compound::DB01004	-1.096669316291809
Compound::DB00860	-1.1004788875579834
Compound::DB00681	-1.1011555194854736
Compound::DB00688	-1.1256868839263916
Compound::DB00624	-1.1428292989730835
Compound::DB00959	-1.1618409156799316
Compound::DB00115	-1.186812400817871
Compound::DB00091	-1.1906721591949463
Compound::DB01024	-1.2051165103912354
Compound::DB00741	-1.2147064208984375
Compound::DB00441	-1.2320411205291748
Compound::DB00158	-1.2346546649932861
Compound::DB00499	-1.252516746520996
Compound::DB00929	-1.2730495929718018
Compound::DB00770	-1.282552719116211
Compound::DB01331	-1.2960493564605713
Compound::DB00958	-1.296778917312622
Compound::DB02527	-1.3034359216690063
Compound::DB00196	-1.3053343296051025
Compound::DB00537	-1.3131842613220215
Compound::DB00644	-1.3131849765777588
Compound::DB01048	-1.3267205953598022
Compound::DB00552	-1.3272082805633545
Compound::DB00328	-1.3286100625991821
Compound::DB00171	-1.3300385475158691
Compound::DB01212	-1.33307683467865
Compound::DB09093	-1.3382985591888428
Compound::DB00783	-1.3385637998580933
Compound::DB09341	-1.3396947383880615
Compound::DB00558	-1.3425898551940918
Compound::DB05382	-1.3575100898742676
Compound::DB01112	-1.3584487438201904
Compound::DB00515	-1.3608112335205078
Compound::DB01101	-1.3815491199493408
Compound::DB01165	-1.3838152885437012
Compound::DB01183	-1.3862131834030151
Compound::DB00815	-1.3863469362258911
Compound::DB00755	-1.3881793022155762
Compound::DB00198	-1.3885042667388916
Compound::DB00480	-1.3935296535491943
Compound::DB00806	-1.3996552228927612
Compound::DB01656	-1.3999735116958618
Compound::DB00759	-1.4046530723571777
Compound::DB00917	-1.4116041660308838
Compound::DB01181	-1.4148895740509033
Compound::DB01039	-1.4176596403121948
Compound::DB00512	-1.4207416772842407
Compound::DB01233	-1.4211865663528442
Compound::DB11996	-1.4257901906967163
Compound::DB00738	-1.4274098873138428
Compound::DB00716	-1.4327492713928223
Compound::DB03461	-1.437927484512329
Compound::DB00591	-1.4404346942901611
Compound::DB01327	-1.4408750534057617
Compound::DB00131	-1.4446901082992554
Compound::DB00693	-1.4460757970809937
Compound::DB00369	-1.4505729675292969
Compound::DB04630	-1.453115463256836
Compound::DB00878	-1.4564695358276367
Compound::DB08818	-1.4633687734603882
Compound::DB00682	-1.4691758155822754
Compound::DB01068	-1.470010757446289
Compound::DB00446	-1.4720206260681152
Compound::DB01115	-1.4729849100112915
Compound::DB00355	-1.4770021438598633
Compound::DB01030	-1.4850695133209229
Compound::DB00620	-1.497349500656128
Compound::DB00396	-1.497694492340088
Compound::DB01073	-1.498704433441162
Compound::DB00640	-1.502620816230774
Compound::DB00999	-1.503427505493164
Compound::DB01060	-1.5043613910675049
Compound::DB00493	-1.5072377920150757
Compound::DB01240	-1.5090980529785156
Compound::DB00364	-1.5099471807479858
Compound::DB01263	-1.5119924545288086
Compound::DB00746	-1.5130668878555298
Compound::DB00718	-1.5183119773864746
Compound::DB01065	-1.5207159519195557
Compound::DB01205	-1.521277904510498
Compound::DB01137	-1.5229606628417969
Compound::DB08894	-1.5239675045013428
Compound::DB00813	-1.5308716297149658
Compound::DB01157	-1.5316542387008667
Compound::DB04570	-1.5430858135223389
Compound::DB00459	-1.550320029258728
Compound::DB01752	-1.554166555404663
Compound::DB00775	-1.555970549583435
Compound::DB01610	-1.5563467741012573

Check Clinial Trial Drugs

There are seven clinial trial drugs hit in top100. (Note: Ribavirin exists in DRKG as a treatment for SARS)

clinical_drugs_file = './COVID19_clinical_trial_drugs.tsv'
clinical_drug_map = {}
with open(clinical_drugs_file, newline='', encoding='utf-8') as csvfile:
    reader = csv.DictReader(csvfile, delimiter='\t', fieldnames=['id', 'drug_name','drug_id'])
    for row_val in reader:
        clinical_drug_map[row_val['drug_id']] = row_val['drug_name']
        
for i in range(topk):
    drug = entity_id_map[int(proposed_dids[i])][10:17]
    if clinical_drug_map.get(drug, None) is not None:
        score = proposed_scores[i]
        print("[{}]\t{}\t{}".format(i, clinical_drug_map[drug],score))
len(clinical_drug_map)
[0]	Ribavirin	-0.21416780352592468
[4]	Dexamethasone	-0.9984012842178345
[8]	Colchicine	-1.080676555633545
[16]	Methylprednisolone	-1.1618409156799316
[49]	Oseltamivir	-1.3885042667388916
[87]	Deferoxamine	-1.5130668878555298

32

附录

上面脚本中下载 DRKG 的函数是在 DRKG/utils/utils.py 中.

函数定义如下:

import os
import tarfile

def download_and_extract():
    import shutil
    import requests
    
    url = "https://s3.us-west-2.amazonaws.com/dgl-data/dataset/DRKG/drkg.tar.gz"
    path = "../data/"
    filename = "drkg.tar.gz"
    fn = os.path.join(path, filename)
    if os.path.exists("../data/drkg/drkg.tsv"):
        return
    
    opener, mode = tarfile.open, 'r:gz'
    os.makedirs(path, exist_ok=True)
    cwd = os.getcwd()
    os.chdir(path)
    while True:
        try:
            file = opener(filename, mode)
            try: file.extractall()
            finally: file.close()
            break
        except Exception:
            f_remote = requests.get(url, stream=True)
            sz = f_remote.headers.get('content-length')
            assert f_remote.status_code == 200, 'fail to open {}'.format(url)
            with open(filename, 'wb') as writer:
                for chunk in f_remote.iter_content(chunk_size=1024*1024):
                    writer.write(chunk)
            print('Download finished. Unzipping the file...')
    os.chdir(cwd)

结语

第四十篇博文写完,开心!!!!

今天,也是充满希望的一天。


文章作者: LuYF-Lemon-love
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 LuYF-Lemon-love !
  目录